Events
Datapoints
Datasets
Projects
Experiments
Events
Retrieve events based on filters
Events
Retrieve events based on filters
POST
/
events
/
export
import honeyhive
from honeyhive.models import components, operations
s = honeyhive.HoneyHive(
bearer_auth="<YOUR_BEARER_TOKEN_HERE>",
)
res = s.events.get_events(request=operations.GetEventsRequestBody(
project='<value>',
filters=[
components.EventFilter(
field='event_type',
value='model',
operator=components.Operator.IS,
type=components.Type.STRING,
),
],
))
if res.object is not None:
# handle response
pass
{
"events": [
{
"project_id": "New Project",
"source": "playground",
"session_id": "caf77ace-3417-4da4-944d-f4a0688f3c23",
"event_id": "7f22137a-6911-4ed3-bc36-110f1dde6b66",
"parent_id": "caf77ace-3417-4da4-944d-f4a0688f3c23",
"event_type": "model",
"event_name": "Model Completion",
"config": {
"model": "gpt-3.5-turbo",
"version": "v0.1 - Fork",
"provider": "openai",
"hyperparameters": {
"temperature": 0,
"top_p": 1,
"max_tokens": 1000,
"presence_penalty": 0,
"frequency_penalty": 0,
"stop": [],
"n": 1
},
"template": [
{
"role": "system",
"content": "Answer the user's question only using provided context.\n\nContext: {{ context }}"
},
{
"role": "user",
"content": "{{question}}"
}
],
"type": "chat"
},
"children_ids": [],
"inputs": {
"context": "Hello world",
"question": "What is in the context?",
"chat_history": [
{
"role": "system",
"content": "Answer the user's question only using provided context.\n\nContext: Hello world"
},
{
"role": "user",
"content": "What is in the context?"
}
]
},
"outputs": {
"role": "assistant",
"content": "Hello world"
},
"error": null,
"start_time": "2024-04-01 22:38:19",
"end_time": "2024-04-01 22:38:19",
"duration": 824.8056,
"metadata": {
"cost": 0.00008,
"completion_tokens": 23,
"prompt_tokens": 35,
"total_tokens": 58
},
"feedback": {},
"metrics": {
"Answer Faithfulness": 5,
"Answer Faithfulness_explanation": "The AI assistant's answer is a concise and accurate description of Ramp's API. It provides a clear explanation of what the API does and how developers can use it to integrate Ramp's financial services into their own applications. The answer is faithful to the provided context.",
"Number of words": 18
},
"user_properties": {
"user": "google-oauth2|111840237613341303366"
}
}
],
"totalEvents": 123
}
Authorizations
Bearer authentication header of the form Bearer <token>
, where <token>
is your auth token.
Body
application/json
Response
200 - application/json
Success
The response is of type object
.
import honeyhive
from honeyhive.models import components, operations
s = honeyhive.HoneyHive(
bearer_auth="<YOUR_BEARER_TOKEN_HERE>",
)
res = s.events.get_events(request=operations.GetEventsRequestBody(
project='<value>',
filters=[
components.EventFilter(
field='event_type',
value='model',
operator=components.Operator.IS,
type=components.Type.STRING,
),
],
))
if res.object is not None:
# handle response
pass
{
"events": [
{
"project_id": "New Project",
"source": "playground",
"session_id": "caf77ace-3417-4da4-944d-f4a0688f3c23",
"event_id": "7f22137a-6911-4ed3-bc36-110f1dde6b66",
"parent_id": "caf77ace-3417-4da4-944d-f4a0688f3c23",
"event_type": "model",
"event_name": "Model Completion",
"config": {
"model": "gpt-3.5-turbo",
"version": "v0.1 - Fork",
"provider": "openai",
"hyperparameters": {
"temperature": 0,
"top_p": 1,
"max_tokens": 1000,
"presence_penalty": 0,
"frequency_penalty": 0,
"stop": [],
"n": 1
},
"template": [
{
"role": "system",
"content": "Answer the user's question only using provided context.\n\nContext: {{ context }}"
},
{
"role": "user",
"content": "{{question}}"
}
],
"type": "chat"
},
"children_ids": [],
"inputs": {
"context": "Hello world",
"question": "What is in the context?",
"chat_history": [
{
"role": "system",
"content": "Answer the user's question only using provided context.\n\nContext: Hello world"
},
{
"role": "user",
"content": "What is in the context?"
}
]
},
"outputs": {
"role": "assistant",
"content": "Hello world"
},
"error": null,
"start_time": "2024-04-01 22:38:19",
"end_time": "2024-04-01 22:38:19",
"duration": 824.8056,
"metadata": {
"cost": 0.00008,
"completion_tokens": 23,
"prompt_tokens": 35,
"total_tokens": 58
},
"feedback": {},
"metrics": {
"Answer Faithfulness": 5,
"Answer Faithfulness_explanation": "The AI assistant's answer is a concise and accurate description of Ramp's API. It provides a clear explanation of what the API does and how developers can use it to integrate Ramp's financial services into their own applications. The answer is faithful to the provided context.",
"Number of words": 18
},
"user_properties": {
"user": "google-oauth2|111840237613341303366"
}
}
],
"totalEvents": 123
}