Technical documentation for creating custom Python evaluators in HoneyHive
Add Evaluator
and select Python Evaluator
.flask
, pandas
, scikit-learn
, jsonschema
, sqlglot
, and requests
event
objects. Key properties include:
event_type
: Type of event (e.g., “model”, “tool”, “chain”, “session”)event_name
: Name of the specific eventinputs
: Input data for the eventoutputs
: Output data from the eventfeedback
: User feedback and ground truth dataFull Event Properties
event_type
: The type of event. Can be model
, tool
, chain
, or session
.event_name
: The name of the event or session.inputs
: The inputs to the event or session.output
: The output of the event or session.feedback
: A JSON object presenting user feedback for the event.Show Schema
in the evaluator console to explore available event properties.Boolean
: For true/false evaluationsNumeric
: For numeric scores or ratingsString
: For categorical evals or other objectssource != evaluation
when initializing the tracer.
event_type
and event_name
in your pipeline, including the root span (session
).
Commit
in the top right corner.